ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИНКЛЮЗИВНОГО ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНО ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет Прикладная математика и информатика Кафедра Информационных технологий и прикладной математики

«Утверждаю»

Зав. кафедрой

«26» августа 2020 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

«Вычислительные системы, сети и телекоммуникации»

образовательная программа направления подготовки 09.03.03 Прикладная информатика Блок Б1.О.16 «Дисциплины (модули)», обязательная часть

Профиль подготовки

Прикладная информатика в биоинформационных технологиях

Квалификация (степень) выпускника Бакалавр

Форма обучения очная

Курс 1, семестр 1,2

Москва 2020

Составитель / составители: <u>МГГЗ</u>	УУ, доцент кафедры ИТиПМ место работы, занимаемая должность
Петрунина Е.В.	•
подпись Ф.И.О.	<u>«21» августа 2020 г.</u> _{Дата}
Payayayay MEEOV yayayayayaha	New Minus
Рецензент: МГГЭУ, доцент кафе	едры ИТИПИ место работы, занимаемая должность
Stip	<u>Белоглазов А.А.</u> <u>«22» августа 2020 г.</u> _{Дата}
подпись	Ф.И.О. Дата
Согласовано:	
Представитель работодателя и	ли объединения работодателей
Генеральный директор, АО «Мик	ропроцессорные системы», к.т.н.
(должнос	ть, место работы)
Демидов Л.Н.	«26» августа 2020 г.
подпись Ф.И.О.	Дата
Фонд опенонных средств рассмо	трен и одобрен на заседании кафедры Информационных
	тики (протокол № 1 от «26» августа 2020 г.)
100	(hporoxed202 1 of \20% ably 01a 2020 11)
/Зав. кафедрой ИТиПМ/	Петрунина Е.В. «26» августа 2020 г.
1 1	TICIPYIIIII L.D. NZOW abi yCla 20201.
поді	пись Ф.И.О. Дата
поді	
	пись Ф.И.О. Дата
Дополнения и изменения, внесен	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесен	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесения кафедры от «»	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесен	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесения кафедры от «» Заведующий кафедрой	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесения кафедры от «» Заведующий кафедрой Дополнения и изменения, внесения	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесения кафедры от «» Заведующий кафедрой Дополнения и изменения, внесения кафедры	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесения кафедры от «» Заведующий кафедрой Дополнения и изменения, внесения кафедры от «» протокол № от «»	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесения кафедры от «» Заведующий кафедрой Дополнения и изменения, внесения кафедры	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесения кафедры от «» Заведующий кафедрой Дополнения и изменения, внесения кафедры от «» протокол № от «»	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесения кафедры от «» Заведующий кафедрой Дополнения и изменения, внесения кафедры от «» заведующий кафедрой от «» заведующий кафедрой	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесения кафедры от «» Заведующий кафедрой Дополнения и изменения, внесения федры от «» Заведующий кафедрой от «» Заведующий кафедрой	ные в фонд оценочных средств, утверждены на заседании
Дополнения и изменения, внесения кафедры от «» Заведующий кафедрой Дополнения и изменения, внесения федры от «» Заведующий кафедрой от «» Заведующий кафедрой	ные в фонд оценочных средств, утверждены на заседании

Содержание

1.	Паспорт фонда оценочных средств
2.	Перечень оценочных средств
3.	Описание показателей и критериев оценивания
	компетенций
4.	Методические материалы, определяющие процедуры оценивания
	результатов обучения, характеризующих этапы формирования
	компетенций
5.	Материалы для проведения текущего контроля и промежуточной
	аттестации

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Вычислительные системы, сети и телекоммуникации»

Оценочные средства составляются в соответствии с рабочей программой дисциплины и представляют собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.), предназначенных для измерения уровня достижения обучающимися установленных результатов обучения.

Оценочные средства используются при проведении текущего контроля успеваемости и промежуточной аттестации.

Таблица 1 - Перечень компетенций, формируемых в процессе освоения дисциплины

Код компетенции	Наименование результата обучения
ОПК-2	Способен использовать современные информационные технологии и программные средства, в том числе отечественного производства, при решении задач профессиональной деятельности
	ОПК-2.1. Знает современные информационные технологии и программные средства, в том числе отечественного производства при решении задач профессиональной деятельности. ОПК-2.2. Умеет выбирать современные информационные технологии и программные средства, в том числе отечественного производства при решении задач профессиональной деятельности.
	ОПК-2.3. Владеет навыками применения современных информационных технологий и программных средств, в том числе отечественного производства, при решении задач профессиональной деятельности.
ОПК-3	Способен решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности ОПК-3.1. Знает принципы, методы и средства решения стандартных задач профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.
	ОПК-3.2. Умеет решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности. ОПК-3.3. Владеет навыками подготовки обзоров, аннотаций, составления рефератов, научных докладов, публикаций, и библиографии по научно-исследовательской работе с учетом требований информационной безопасности.

Конечными результатами освоения дисциплины являются сформированные когнитивные дескрипторы «знать», «уметь», «владеть», расписанные по отдельным компетенциям. Формирование дескрипторов происходит в течение всего семестра по этапам в рамках контактной работы, включающей различные виды занятий и самостоятельной работы, с применением различных форм и методов обучения (табл.2).

Таблица 2 - Формирование компетенций в процессе изучения дисциплины:

Код компетенции	Уровень освоения компетенций	Индикаторы достижения компетенций	Вид учебных занятий ¹ , работы, формы и методы обучения, способствующие формированию и развитию компетенций ²		Оценочные средства, используемые для оценки уровня сформированности компетенции ⁴
ОПК-2	Недостаточный уровень	Знает ОПК-2. Студент не знает основ современных информационных технологии и программные средства, в том числе отечественного производства при решении задач профессиональной деятельности, знает историю вычислительной техники, принципы построения ЭВМ, классификацию ЭВМ, архитектуру, логические и арифметические основы ЭВМ, структуру ПК, программное обеспечение ПК, операционные системы.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Персональный компьютер. Вычислительные сети и коммуникации. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
	Базовый уровень	ОПК-2.1. Студент усвоил основное содержание материала дисциплины, но имеет пробелы в усвоении материала. Имеет несистематизированные знания о	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной	компьютер. 3. Вычислительные сети	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.

_

 $^{^{1}}$ Лекционные занятия, практические занятия, лабораторные занятия, самостоятельная работа...

² Необходимо указать активные и интерактивные методы обучения (например, интерактивная лекция, работа в малых группах, методы мозгового штурма и т.д.), способствующие развитию у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств.

³ Наименование темы (раздела) берется из рабочей программы дисциплины.

⁴ Оценочное средство должно выбираться с учетом запланированных результатов освоения дисциплины, например: «Знать» – собеседование, коллоквиум, тест...

[«]Уметь», «Владеть» – индивидуальный или групповой проект, кейс-задача, деловая (ролевая) игра, портфолио...

		основ современных	аттестации, подготовка и	4. Компьютерные сети.	
		информационных технологии и	сдача экзамена	i. Romibio replible cern.	
		программные средства, в том числе	еда на экзамена		
		отечественного производства при			
		решении задач профессиональной			
		деятельности, знает историю			
		вычислительной техники, принципы			
		построения ЭВМ, классификацию			
		ЭВМ, архитектуру, логические и			
		арифметические основы ЭВМ,			
		структуру ПК, программное			
		обеспечение ПК, операционные			
		системы Поверхностно понимает			
		модель передачи информации,			
		основные понятия и принципы			
		построения вычислительной сети,			
		компоненты сетей, классификации			
		сетей, понятие многоуровневой			
	U	модели сетевого взаимодействия.		1 0 0001	
	сдний	ОПК-2.1. Студент способен	Лекционные и	1. Организация ЭВМ.	Текущий контроль –
уров	вень	самостоятельно выделять главные	практические занятия,	2. Персональный	устный опрос,
		положения в изученном материале.	самостоятельная работа	компьютер.	тестирование, защита
		Знает основные принципы	обучающихся, подготовка и	3. Вычислительные сети	отчетов по
		современных информационных технологии и программные средства,	сдача промежуточной	и коммуникации.	практическим работам.
		в том числе отечественного	аттестации, подготовка и	4. Компьютерные сети.	
		производства при решении задач	сдача экзамена		
		профессиональной деятельности,			
		знает историю вычислительной			
		техники, принципы построения ЭВМ,			
		классификацию ЭВМ, архитектуру,			
		архитектуру сетей, принципы			
		построения сетей, маршрутизации,			
		стеки протоколов.			

Высокий уровень	ОПК-2.1. Студент знает, понимает, выделяет главные положения в изученном материале и способен дать краткую характеристику основным идеям проработанного материала дисциплины. Студент знает, знает историю вычислительной техники, принципы построения ЭВМ, классификацию ЭВМ, архитектуру, логические и арифметические основы ЭВМ, структуру ПК, программное обеспечение ПК, операционные системы., понимает модель передачи информации, основные понятия и принципы построения вычислительной сети, компоненты сетей, классификации сетей. понятие многоуровневой модели сетевого взаимодействия.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
Базовый уровень	Умеет ОПК-2.2. Студент умеет непоследовательно применять современные информационные технологии и программные средства, в том числе отечественного производства при решении задач профессиональной деятельности (операционные системы, прикладное ПО). Испытывает затруднения при работе с программными средствами, в том числе отечественного производства при моделировании и тестировании компьютерных сетей.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.

Средний уровень	ОПК-2.2. Студент умеет использовать современные информационные технологии и программные средства, в том числе отечественного производства при решении задач профессиональной деятельности (операционные системы, прикладное ПО) использовать современные информационные технологии и программные средства, в том числе отечественного производства при моделировании компьютерных сетей.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	2.3.	Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети.	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
Высокий уровень	ОПК-2.2. Студент умеет анализировать элементы ПК, архитектуру ЭВМ Умеет самостоятельно выбирать современные информационные технологии и программные средства, в том числе отечественного производства при решении задач профессиональной деятельности (операционные системы, прикладное ПО), выбирать и использовать современные информационные технологии и программные средства, в том числе отечественного производства при моделировании и тестировании компьютерных сетей.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	2.3.	Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети.	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
Базовый уровень	Владеет ОПК-2.3. Студент владеет основными навыками применения современных информационных технологий и программных средств, в том числе отечественного производства, при решении задач профессиональной деятельности.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	2.3.	Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети.	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.

	Средний уровень Высокий уровень	ОПК-2.3. Студент владеет знаниями всего изученного материала, владеет навыками применения современных информационных технологий и программных средств, в том числе отечественного производства, при решении задач профессиональной деятельности, допускает незначительные ошибки при подготовке обзоров, аннотаций, составления рефератов, научных докладов. ОПК-2.3. Студент владеет навыками применения современных информационных технологий и	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена Лекционные и практические занятия, самостоятельная работа	 3. 4. 	Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети. Организация ЭВМ. Персональный компьютер.	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам. Текущий контроль – устный опрос, тестирование, защита
		программных средств, в том числе отечественного производства, при решении задач профессиональной деятельности; подготовки обзоров, аннотаций, составления рефератов, научных докладов.	самостоятельная расота обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена			отчетов по практическим работам.
ОПК-3		Знает				
	Недостаточный уровень	ОПК-3. Студент не знает принципы, методы и средства решения стандартных задач профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	3.	Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети.	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.

Базовый уровень	ОПК-3.1. Студент усвоил основное содержание материала дисциплины, но имеет пробелы в усвоении материала. Имеет несистематизированные знания о принципах, методах и средствха решения стандартных задач профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
Средний уровень	ОПК-3.1. Студент способен самостоятельно выделять главные положения в изученном материале. Знает основные принципы, средства решения стандартных задач профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
Высокий уровень	ОПК-3.1. Студент знает, понимает, выделяет главные положения в изученном материале и способен дать краткую характеристику основным идеям проработанного материала дисциплины. Показывает глубокое знание и понимание основ современных информационных технологии и программные средства, в том числе отечественного производства при решении задач профессиональной деятельности при построении и тестировании компьютерных сетей	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.

	Умеет			
азовый ровень	ОПК-3.2. Студент испытывает затруднения при применении современных информационных технологий и программных средств, при решении задач профессиональной деятельности.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
 редний ровень	ОПК-3.2. Студент умеет самостоятельно работать в качестве уверенного пользователя персонального компьютера. Умеет применять современные информационные технологии и программные средства, при решении задач профессиональной деятельности.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
ысокий ровень	ОПК-3.2. Студент умеет анализировать элементы, устанавливать связи между ними, самостоятельно работать в качестве уверенного пользователя персонального компьютера. Умеет применять современные информационные технологии и программные средства, при решении задач профессиональной деятельности.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Организация ЭВМ. Персональный компьютер. Вычислительные сети и коммуникации. Компьютерные сети. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
	Владеет			

Базовый уровень	ОПК-3.3. Студент владеет навыками применения современных информационных технологий и программных средств, в том числе отечественного производства, при моделировании компьютерных сетей.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и	 Персональный компьютер. Вычислительные сети и коммуникации. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
Средний уровень	ОПК-3.3. Студент владеет навыками применения современных информационных технологий и программных средств, в том числе отечественного производства, при моделировании компьютерных сетей.	сдача экзамена Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Персональный компьютер. Вычислительные сети и коммуникации. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.
Высокий уровень	ОПК-3.3. Студент владеет навыками применения современных информационных технологий и программных средств, в том числе отечественного производства, при моделировании компьютерных сетей.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации, подготовка и сдача экзамена	 Персональный компьютер. Вычислительные сети и коммуникации. 	Текущий контроль – устный опрос, тестирование, защита отчетов по практическим работам.

2. ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ⁵

Таблица 3

No	Наименование оценочного средства	Характеристика оценочного средства	Представление оценочного средства в ФОС
1	Устный опрос	Средство контроля усвоения учебного материала темы, раздела или разделов дисциплины, организованное как учебное занятие в виде собеседования преподавателя с обучающимися.	Вопросы по темам/разделам дисциплины
2	Тест	Средство, позволяющее оценить уровень знаний обучающегося путем выбора им одного из нескольких вариантов ответов на поставленный вопрос. Возможно использование тестовых вопросов, предусматривающих ввод обучающимся короткого и однозначного ответа на поставленный вопрос.	Тестовые задания
3	Практическая работа	Практическая работа представляет собой контрольное мероприятие по учебному материалу каждой темы (раздела) дисциплины, состоящее в индивидуальном выполнении обучающимся реферата на заданную тему для оценки полученных знаний, умений и владений компетенциями, формируемыми по данной дисциплине.	Практические задания

-

⁵ Указываются оценочные средства, применяемые в ходе реализации рабочей программы данной дисциплины.

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Оценивание результатов обучения по дисциплине «Информатика» осуществляется в соответствии с Положением о текущем контроле успеваемости и промежуточной аттестации обучающихся.

Предусмотрены следующие виды контроля: текущий контроль (осуществление контроля всех видов аудиторной и внеаудиторной деятельности обучающегося с целью получения первичной информации о ходе усвоения отдельных элементов содержания дисциплины) и промежуточная аттестация (оценивается уровень и качество подготовки по дисциплине в целом).

Показатели и критерии оценивания компетенций, формируемых в процессе освоения данной дисциплины, описаны в табл. 4.

Таблица 4.

Код компетенции	Уровень освоения компетенции	Индикаторы достижения	Критерии оценивания результатов обучения	
компетенции	компетенции	компетенции		
		Знает		
ОПК-2	Недостаточный уровень	ОПК-2.1.	Не знает значительной части материала курса, не способен самостоятельно выделять	
ОПК-3	Оценка	ОПК-3.1.	главные положения в изученном материале дисциплины	
OHK-3	«неудовлетворительно»	01111 5.11.	chaonote nonoacental o usy termon mameputate ouequitation	
	Базовый уровень	ОПК-2.1.	Знает не менее 50 % основного материала курса, однако испытывает затруднения в его	
	Оценка,	ОПК-3.1.	применении	
	«удовлетворительно»			
	Средний уровень	ОПК-2.1.	Знает основную часть материала курса, способен применить изученный материал на	
	Оценка «хорошо»	ОПК-3.1.	практике, испытывает незначительные затруднения в решении задач	
	Высокий уровень	ОПК-2.1.	Показывает глубокое знание и понимание материала, способен применить изученный	
	Оценка «отлично»	ОПК-3.1.	материал на практике	
		Умеет		
	Базовый уровень	ОПК-2.2.	Умеет воспроизвести не менее 50 % основного материала курса, однако испытывает	
		ОПК-3.2.	затруднения при решении практических задач	
	Средний уровень	ОПК-2.2.	Умеет решать стандартные профессиональные задачи с применением полученных	
		ОПК-3.2.	знаний, испытывает незначительные затруднения в решении задач	
	Высокий уровень	ОПК-2.2.	Умеет решать стандартные профессиональные задачи с применением полученных	
		ОПК-3.2.	знаний, показывает глубокое знание и понимание материала, способен решить задачу	
			при изменении формулировки	
		Владеет		
	Базовый уровень	ОПК-2.3.	Владеет навыками теоретического и экспериментального исследования объектов	
		ОПК-3.3.	профессиональной деятельности, усвоил основное содержание материала дисциплины,	
			но имеет пробелы в усвоении материала. Имеет несистематизированные знания	
			основных разделов дисциплины.	
	Средний уровень	ОПК-2.3.	Владеет навыками теоретического и экспериментального исследования объектов	
		ОПК-3.3.	профессиональной деятельности, способен самостоятельно выделять главные	
			положения в изученном материале. Испытывает незначительные затруднения в	
		0774.00	решении задач.	
	Высокий уровень	ОПК-2.3.	Свободно владеет навыками теоретического и экспериментального исследования,	
		ОПК-3.3.	показывает глубокое знание и понимание изученного материала	

4. Методические материалы, определяющие процедуры оценивания результатов обучения

Задания в форме устного опроса:

Устный опрос используется для текущего контроля успеваемости обучающихся по дисциплине в качестве проверки результатов освоения терминологии. Каждому студенту выдается свой собственный, узко сформулированный вопрос. Ответ должен быть четким и кратким, содержащим все основные характеристики описываемого понятия, института, категории.

Задания в форме тестирования

Тест представляет собой контрольное мероприятие по учебному материалу каждой темы (раздела) дисциплины, состоящее в выполнении обучающимся системы стандартизированных заданий, которая позволяет автоматизировать процедуру измерения уровня знаний и умений обучающегося.

Тестирование является средством текущего контроля успеваемости обучающихся по дисциплине и может включать в себя следующие типы заданий: задание с единственным выбором ответа из предложенных вариантов, задание на определение верных и неверных суждений; задание с множественным выбором ответов.

В каждом задании необходимо выбрать все правильные ответы.

Задания в форме практических работ

Практическая работа представляет собой контрольное мероприятие по учебному материалу каждой темы (раздела) дисциплины, состоящее в индивидуальном выполнении обучающимся практических заданий для оценки полученных знаний, умений и владений компетенциями, формируемыми по данной дисциплине.

Выполнение практических работ является средством текущего контроля успеваемости обучающихся по дисциплине и может включать в себя следующие типы заданий: задания типового вида и задания творческого характера, по результатам выполнения практических заданий обучающие оформляют отчеты, содержащие анализ полученных результатов и выводы.

5. Материалы для проведения текущего контроля и промежуточной аттестации

Задания в форме устного опроса

Семестр 1

Тема 1. Организация ЭВМ

- 1) История развития средств ВТ. Поколения ЭВМ.
- 2) Классификации ЭВМ. Понятие архитектуры ЭВМ.
- 3) Функциональная схема ЭВМ. Узлы ЭВМ и каналы связи. Принципы фон Неймана. Принстонская архитектура ЭВМ.
- 4) Классификация Флинна. Процессорный конвейер. Многоядерный процессор. Многопроцессорные системы.

- 5) Арифметические основы функционирования ЭВМ. Представление чисел. Двоичная арифметика.
- 6) Логические основы функционирования ЭВМ. Предикаты. Нормализация. Логический элемент. Конечный цифровой автомат.
- 7) Ключевой режим работы транзистора. Элементная база ЭВМ. Триггер. Регистр. Сумматор.

Тема 2. Персональный компьютер

- 1) Корпус ПК. Материнская плата. Каналы связи между узлами ПК.
- 2) Процессор. Оперативная память. Системные ресурсы ПК.
- 3) Видеоподсистема ПК. Монитор. Постоянная память в ПК. Внешние интерфейсы.
 - 4) Шина USB. Устройства ввода и вывода.
- 5) Мультимедийные устройства. Основы программного управления ЭВМ. Алгоритм.
 - 6) Машинная команда. Компьютерная программа.
 - 7) Программное обеспечение ЭВМ.
 - 8) Операционная система. Процессы и потоки.
 - 9) Вытесняющая многозадачность. Файловая система

Тема 3. Вычислительные сети и коммуникации

- 1) Модель передачи информации. Каналы и линии связи. Понятие вычислительной сети.
 - 2) Компоненты сетей. Основная задача сетевого взаимодействия.
 - 3) Классификации сетей. Коммутация в сетях.
 - 4) Понятие топологии.
- 5) Понятие многоуровневой модели сетевого взаимодействия. Сетевой протокол и протокольный стек. Модель OSI.

Тема 4. Компьютерные сети

- 1) Модель стека TCP/IP (DoD).
- 2) Сетевая архитектура. Сетевой интерфейс.
- 3) Методы доступа к среде передачи.
- 4) Кодирование сигналов.
- 5) Физическая адресация. Сетевой кадр (фрейм).
- 6) Архитектуры Ethernet, Wi-Fi, BlueThooth.
- 7) Адресация в компьютерных сетях. Адресное пространство. IPv4-адресация. ARP. IPv6-адресация. DHCP. DNS. Технология NAT.
 - 8) Транспортный уровень модели TCP/IP. Протоколы TCP и UDP.
- 9) Методы взаимодействия в гетерогенных сетях. Маршрутизация. Роутер. Протоколы RIP и OSPF.
 - 10) Сети общего пользования. Сеть Интернет.
 - 11) Служба Web. Облачные технологии. Технология VPN.

Контролируемые компетенции: ОПК-2, ОПК-3

Оценка компетенций осуществляется в соответствии с таблицей 4.

Задания в форме практических работ. Комплект разноуровневых задач (заданий)

- 1 Подключите и настройте беспроводной сетевой адаптер и точку доступа. Установите необходимое программное обеспечение.
- 2 Подключите и настройте сетевой адаптер (сетевая карта). Установите необходимое программное обеспечение.
- 3 На рабочей станции сети определите настройки протокола IP и адресов хоста, используя встроенные утилиты.
 - 4 Организуйте защищенную беспроводную сеть на базе маршрутизатора.
 - 5 Организуйте защищенную беспроводную сеть на базе маршрутизатора.

Подключить к сети 2 компьютера (один компьютер LAN, второй Wi-Fi).

- 6 Создайте домен и подключить в него группы компьютеров.
- 7 Выполните обжим коннекторов кабеля витой пары по стандарту Т568A. Проверьте правильность обжима кабеля.
- 8 Выполните обжим коннекторов кабеля витой пары по стандарту Т568В. Проверьте правильность обжима кабеля.
- 9 Выполните обжим перекрестного кабеля (кроссовер). Проверьте правильность обжима кабеля.
- 10 Выполните обжим розетки категории 5 под разъем RJ45. Проверьте правильность обжима кабеля.
- 11 Установите и настройте почтовые программы для получения электронной почты (Outlook Express или The Bat).
- 12 Организуйте раздачу мобильного интернета (usb-модем) компьютерам в сети без создания сетевого моста.

Контролируемые компетенции: ОПК-2, ОПК-3

Оценка компетенций осуществляется в соответствии с таблицей 4.

Тестовые задания Семестр 1

Семинар

Тема: «Персональный компьютер».

Перечень тем докладов:

- 1. Оперативная память ПК: типы, микросхемы и модули, банки памяти.
- 2. Логическая организация памяти в IBM РС-совместимых ПК.
- 3. Видеоподсистема ПК. Видеокарты. Мониторы.
- 4. Жесткие диски. Стримеры.
- 5. Накопители на оптических дисках.
- 6. Шина USB: назначение, виды, характеристики.
- 7. Флеш-память.
- 8. Устройства ввода: клавиатура, мышь, тачпад, джойстик, сканер.
- 9. Цифровые фото- и видеокамеры.
- 10. Принтеры.
- 11. Звуковая подсистема ПК: представление звуковой информации, оборудование и задачи обработки звука.

Компьютерный тест

Примеры вариантов тестовых заданий:

Вариант 1

Задание #1

... - совокупность (система) технических средств для выполнения обработки информации и ее представления в необходимом формате.

- 1) Вычислительная машина (компьютер)
- 2) Вычислительная система
- 3) Информационная система
- 4) Программное обеспечение

Задание #2

... - совокупность одного или нескольких компьютеров, программного обеспечения, при необходимости, сетевой среды и периферийного оборудования, организованная для обработки информации.

- 1) Вычислительная машина
- 2) Вычислительная система
- 3) Информационная система
- 4) Компьютерная сеть

Задание #3

... - совокупность средств вычислительной системы и обрабатываемой ею информации.

- 1) Вычислительная машина
- 2) Вычислительная система
- 3) Программное обеспечение
- 4) Информационная система

Задание #4

Принцип, не относящийся к принстонской архитектуре ЭВМ (фон Неймана):

- 1) принцип двоичного кодирования
- 2) принцип разделения каналов доступа к командам и к данным
- 3) принцип программного управления
- 4) принцип адресности

Задание #5

Принцип, не относящийся к гарвардской архитектуре ЭВМ:

- 1) принцип двоичного кодирования
- 2) принцип разделения каналов доступа к командам и к данным
- 3) принцип программного управления
- 4) принцип однородности памяти

Задание #6

Обработка информации в ЭВМ не подразумевает этап:

- 1) преобразования
- 2) хранения

- 3) задержки
- 4) передачи

Время 12:58:05 записано в системе счисления:

- 1) непозиционной
- 2) двенадцатеричной
- 3) смешанной
- 4) десятичной

Задание #8

Недопустимая запись числа:

- 1) 16₁₆
- 2) 788
- 3) 0000100112
- 4) 224

Задание #9

Недопустимая запись числа:

- 1) 17₁₆
- 2) 778
- 3) 11111112
- 4) 24₄

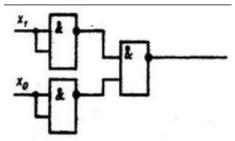
Задание #10

Укажите все одноместные булевы функции:

- 1) отрицание
- 2) повторение
- 3) стрелка Пирса
- 4) дизъюнкция

Задание #11

Количество двухместных булевых функций равно


Задание #12

Тождественно истинная формула, т.е. имеющая значение "истина" на всем наборе переменных, называется:

- 1) константа "ложь"
- 2) противоречие
- 3) тавтология
- 4) константа "истина"

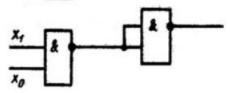
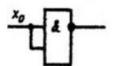

Задание #13

Схема на основе логических элементов 2И-НЕ на рисунке реализует логическую функцию:

- 1) функцию Шеффера
- 2) И
- 3) ИЛИ
- 4) HE


Схема на основе логических элементов 2И-НЕ на рисунке реализует логическую функцию:

- 1) функцию Шеффера
- 2) И
- 3) ИЛИ
- 4) HE

Задание #15

Схема на основе логического элемента 2И-НЕ на рисунке реализует логическую функцию:

- 1) функцию Шеффера
- 2) И
- 3) ИЛИ
- 4) HE

Задание #16

... - определенная последовательность действий, выполнение которой приведет к решению поставленной задачи.

- 1) программное обеспечение
- 2) машинная команда
- 3) ассемблер
- 4) алгоритм

Задание #17

- ... язык программирования на основе символических кодов машинных команд.
- 1) JavaScript
- 2) микропрограмма

- 3) ассемблер
- 4) Бейсик

Залание #18

... - способ записи алгоритма с помощью набора допустимых арифметических, логических, ввода-вывода и др. команд для УУ процессора с целью решения задачи на ЭВМ.

- 1) программное обеспечение
- 2) микропрограмма
- 3) ассемблер
- 4) компьютерная программа

Вариант 2

Задание #1

Тип современных компьютеров:

- 1) электро-механические
- 2) электронные
- 3) квантовые
- 4) фотонные

Задание #2

Согласно К. Шеннону, для технической системы имеет значение:

- 1) только форма представления информации
- 2) только смысл информации
- 3) семантический аспект информационного сообщения
- 4) количество пользователей системы

Задание #3

... - программно управляемая вычислительная машина для автоматической обработки числовой информации, основные компоненты которой (машины) выполнены на электронных элементах.

- 1) электронная вычислительная машина (ЭВМ)
- 2) электро-механическая вычислительная машина
- 3) информационная система
- 4) компьютерная сеть

Задание #4

Современные ЭВМ строятся на основе:

- 1) принципов принстонской архитектуры
- 2) принципов гарвардской архитектуры
- 3) сочетания архитектуры фон Неймана и гарвардской архитектуры
- 4) сочетания архитектуры фон Неймана, гарвардской архитектуры, а также позднейших архитектурных новаций

Залание #5

Функциональный узел ЭВМ, не входящий в архитектуру фон Неймана:

- 1) процессор
- 2) основная память
- 3) память команд
- 4) контроллер ввода-вывода

Функциональный узел процессора, отвечающий за управление вычислительным процессом:

- 1) устройство управления
- 2) арифметико-логическое устройство
- 3) процессорный кеш
- 4) регистры процессора

Задание #7

Запись 1284 возможна только в системе счисления:

- 1) двоичной
- 2) троичной
- 3) восьмеричной
- 4) десятичной

Задание #8

Запись 9999 возможна только в системе счисления:

- 1) двоичной
- 2) троичной
- 3) восьмеричной
- 4) шестнадцатеричной

Задание #9

Максимальное четырехразрядное число в шестнадцатеричной системе счисления:

- 1) 1111
- 2) 2222
- 3) 9999
- 4) FFFF

Задание #10

Тождественно ложная формула, т.е. имеющая значение "ложь" на всем наборе переменных, называется:

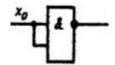
- 1) константа "ложь"
- 2) противоречие
- 3) тавтология
- 4) константа "истина"

Задание #11

Укажите неправильный вариант. Логическая функция на рисунке называется:

$$f = x \oplus y$$

- 1) неравнозначность
- 2) инверсия эквивалентности
- 3) сложение по модулю 2
- 4) эквивалентность


Задание #12

- ... это булева функция, которая принимает значение "истина" только тогда, когда истинны оба ее аргумента.
 - 1) конъюнкция
 - 2) дизъюнкция
 - 3) неравнозначность

4) функция Шеффера

Задание #13

Схема на основе логического элемента 2И-НЕ на рисунке реализует логическую функцию:

- 1) функцию Шеффера
- 2) И
- 3) ИЛИ
- 4) HE

Задание #14

... - электронное устройство, состояние выходов которого зависит не только от текущего состояния входов, но и от предыдущего состояния.

- 1) логический элемент
- 2) сумматор
- 3) триггер
- 4) регистр

Задание #15

- ... электронное устройство для хранения двоичной информации.
- 1) логический элемент
- 2) сумматор
- 3) триггер
- 4) регистр

Задание #16

... - набор допустимых арифметических, логических, ввода-вывода и др. операторов для выполнения на ЭВМ, правила их синтаксиса и использования.

- 1) программное обеспечение
- 2) микропрограмма
- 3) язык программирования
- 4) компьютерная программа

Задание #17

Для программиста не доступны:

- 1) микрокоманды процессора
- 2) машинные команды
- 3) код на ассемблере
- 4) код на языке высокого уровня

Залание #18

... - набор компьютерных программ, необходимый для функционирования вычислительной системы и решения прикладных задач пользователя.

- 1) программное обеспечение
- 2) микрокод
- 3) ассемблер
- 4) компилятор

Вариант 3

Задание #1

... - фундаментальная организация ЭВМ, наиболее общие принципы, определяющие состав ее компонентов, их связи друг с другом и с окружающей средой.

- 1) Информационная система
- 2) Компьютерная сеть
- 3) Архитектура ЭВМ
- 4) Шинная организация

Задание #2

Сопоставьте различные понимания архитектуры ЭВМ с конкретными примерами:

- 1) Фундаментальные принципы организации ЭВМ
- 2) Техническое описание аппаратной платформы ЭВМ
- 3) Архитектура процессора

AMD-64 (x86-64)
Принстонская архитектура
IBM System z

Задание #3

Сопоставьте различные понимания архитектуры ЭВМ с конкретными примерами:

- 1) Фундаментальные принципы организации ЭВМ
- 2) Техническое описание аппаратной платформы ЭВМ
- 3) Архитектура процессора

Intel x86 (IA-32)
Гарвардская архитектура
Apple Macintosh

Задание #4

Преобладающий тип связей между функциональными узлами в современных

ЭВМ:

- 1) классическая структура связей
- 2) параллельная шина
- 3) последовательная шина
- 4) нейросеть

Задание #5

Характеристика, относящаяся к последовательному типу шин:

- 1) лучшая, чем в параллельных шинах, производительность на высоких частотах
- 2) лучшая, чем в параллельных шинах, производительность на низких частотах
- 3) сложность физического интерфейса
- 4) меньшая экономичность и компактность

Задание #6

Функциональный узел процессора, хранящий операнды текущей команды:

- 1) устройство управления
- 2) арифметико-логическое устройство
- 3) процессорный кеш
- 4) регистры процессора

Максимальное четырехразрядное число в двоичной системе счисления:

- 1) 1111
- 2) 2222
- 3) 9999
- 4) 0000

Залание #8

Количество комбинаций нулей и единиц на 8-ми разрядах равно

Залание #9

Максимальное восьмиразрядное двоичное число в десятичной системе счисления равно

Задание #10

... - это булева функция, которая принимает значение "ложь" только тогда, когда ложны оба ее аргумента.

- 1) конъюнкция
- 2) дизъюнкция
- 3) неравнозначность
- 4) функция Шеффера

Задание #11

Чему равно логическое выражение x + 0 (здесь 0="ложь")?

- 1) x
- 2) не x
- 3) ложь
- 4) истина

Задание #12

Чему равно логическое выражение x + 1 (здесь 1 = "истина")?

- 1) x
- 2) не x
- 3) ложь
- 4) истина

Задание #13

... - электронное устройство для выполнения арифметической операции сложения, на основе которого строят также электронные схемы, реализующие вычитание, умножение, деление и некоторые логические операции.

- 1) логический элемент
- 2) сумматор
- 3) триггер
- 4) регистр

Задание #14

Чистый полупроводник обладает:

- 1) слабой собственной проводимостью
- 2) проводимостью п-типа

- 3) проводимостью р-типа
- 4) свойствами изолятора

Укажите неправильный вариант.

Электронный ключ можно реализовать на основе:

- 1) вакуумной лампы
- 2) электромагнитного реле
- 3) биполярного транзистора
- 4) полевого транзистора

Задание #16

В состав системного программного обеспечения не входит:

- 1) операционная система
- 2) операционная оболочка
- 3) архиватор
- 4) драйвер звуковой карты

Задание #17

Способ взаимодействия, когда каждая часть выводимых данных располагается в собственном субэкранном простронстве:

- 1) оконный интерфейс
- 2) интерфейс командной строки
- 3) тактильный интерфейс
- 4) голосовой интерфейс

Задание #18

К прикладному программному обеспечению не относится:

- 1) электронная таблица
- 2) компьютерный вирус
- 3) утилита мониторинга сети
- 4) текстовый редактор

Вариант 4

Задание #1

Первое в истории программируемое техническое устройство:

- 1) паскалина
- 2) механический калькулятор Лейбница
- 3) табулятор Г.Холлерита
- 4) ткацкий станок Жаккара

Задание #2

Идея универсальности решаемых вычислительных задач впервые была предложена разработчиками:

- 1) табулятора (Г.Холлерит)
- 2) механического калькулятора (Г.Лейбниц)
- 3) паскалины
- 4) "аналитической машины" (Ч.Бэббидж)

Задание #3

Базисный элемент ЭВМ второго поколения:

1) транзистор

- 2) электронная вакуумная лампа
- 3) интегральная схема
- 4) электромагнитное реле

... - функциональный узел процессора, осуществляющий предварительную загрузку команд той или иной ветви условного перехода в кеш с целью сокращения времени простоя процессора.

- 1) устройство управления
- 2) арифметико-логическое устройство
- 3) процессорный кеш L1
- 4) модуль предсказания переходов

Задание #5

Процессорный кеш в современных ЭВМ реализует основной принцип гарвардской архитектуры:

- 1) разделение памяти для команд и для данных
- 2) предсказание переходов
- 3) конвейерная обработка
- 4) суперскалярность

Задание #6

Компьютер архитектуры фон Неймана по классификации Флинна относится к типу:

- 1) SISD
- 2) SIMD
- 3) MISD
- 4) MIMD

Задание #7

Десятичное число $17,25_{10}$ в шестнадцатеричной системе счисления равно

Задание #8

Десятичное число 10.5_{10} в восьмеричной системе счисления равно

Задание #9

Число 25,625 в нормальной форме представления (с плавающей запятой) примет

- 1) 25,625E+00
- 2) 25,625

вид:

- 3) 2,56250E+01
- 4) 0,25625E+02

Задание #10

Логическое выражение (х и (не х)) равно:

- 1) x
- 2) не х
- 3) ложь
- 4) истина

Залание #11

Логическое выражение (х или (не х)) равно:

- 1) x
- 2) не x
- 3) ложь
- 4) истина

Залание #12

Базисный набор логических функций составляют:

- 1) функция Шеффера
- 2) И, ИЛИ
- 3) ИЛИ
- 4) HE

Задание #13

Чистый полупроводник обладает:

- 1) слабой собственной проводимостью
- 2) проводимостью п-типа
- 3) проводимостью р-типа
- 4) свойствами изолятора

Задание #14

Легированный полупроводник обладает:

- 1) слабой собственной проводимостью
- 2) примесной проводимостью
- 3) свойствами проводника
- 4) свойствами изолятора

Задание #15

Современные интегральные микросхемы строятся на основе:

- 1) реле
- 2) вакуумных ламп
- 3) биполярных транзисторов
- 4) полевых транзисторов

Задание #16

... - способ реализации многозадачности в однопроцессорных одноядерных вычислительных системах.

- 1) MIMD
- 2) квазипараллельность
- 3) многоядерность
- 4) диспетчеризация

Задание #17

... - критерий, на основе которого ядро операционной системы выбирает задачу для предоставления ей ресурсов процессора.

- 1) поток
- 2) вытеснение
- 3) квазипараллельность
- 4) приоритет

Задание #18

К задачам операционной системы не относится:

- 1) управление оборудованием ЭВМ
- 2) организация и управление программной средой
- 3) предоставление пользовательского интерфейса
- 4) управление информационными хранилищами

Вариант 5

Задание #1

Базисный элемент ЭВМ третьего поколения:

- 1) транзистор
- 2) электронная вакуумная лампа
- 3) интегральная схема (ИС)
- 4) сверхбольшая интегральная схема (СБИС)

Задание #2

Квазипараллельная вычислительная система по классификации Флинна относится к типу:

- 1) SISD
- 2) SIMD
- 3) MISD
- 4) MIMD

Задание #3

Главное архитектурное отличие ЭВМ четвертого поколения от машин третьего поколения:

- 1) реализация процессора на одной микросхеме
- 2) реализация процессора на электронных компонентах
- 3) увеличение размеров ЭВМ
- 4) переход на двоичное представление информации

Залание #4

Вычислительная система на основе многоядерного процессора по классификации Флинна относится к типу:

- 1) SISD
- 2) SIMD
- 3) MISD
- 4) MIMD

Задание #5

Базисный элемент ЭВМ четвертого поколения:

- 1) транзистор
- 2) электронная вакуумная лампа
- 3) интегральная схема (ИС)
- 4) сверхбольшая интегральная схема (СБИС)

Задание #6

Многопроцессорная вычислительная система по классификации Флинна относится к типу:

- 1) SISD
- 2) SIMD
- 3) MISD
- 4) MIMD

Число 38,83 в нормальной форме представления (с плавающей запятой) примет вид:

- 1) 38,83E+00
- 2) 38,83
- 3) 3,88300E+01
- 4) 0,38830E+02

Задание #8

Число 25_{10} в прямом двоичном коде примет вид (разряд слева от точки - знаковый):

- 1) 0.00110
- 2) 0.11001
- 3) 1.11001
- 4) 1.00110

Задание #9

Число -25_{10} в прямом двоичном коде примет вид (разряд слева от точки - знаковый):

- 1) 0.00110
- 2) 0.11001
- 3) 1.11001
- 4) 1.00110

Задание #10

Базисный набор логических функций составляют:

- 1) HE
- 2) И, ИЛИ
- 3) И, ИЛИ, НЕ
- 4) ИЛИ

Задание #11

Таблица истинности на рисунке задает логическую функцию:

X	y	f
0	0	1
0	1	1
1	0	1
1	1	0

- 1) стрелка Пирса (отрицающее ИЛИ)
- 2) штрих Шеффера (отрицающее И)
- 3) неравнозначность
- 4) конъюнкция

Задание #12

Таблица истинности на рисунке задает логическую функцию:

X	У	f
0	0	1
0	1	0
1	0	0
1	1	0

- 1) стрелка Пирса (отрицающее ИЛИ)
- 2) штрих Шеффера (отрицающее И)
- 3) неравнозначность
- 4) конъюнкция

Укажите неправильное утверждение.

- 1) Транзистор, работающий в ключевом режиме, базовый элемент современных ЭВМ.
- 2) Логические элементы это схемы на основе транзисторов, реализующие те или иные логические функции над данными.
- 3) Из логических элементов строятся цифровые узлы, из которых, в свою очередь, состоят вычислительные устройства, в т.ч. и ЭВМ.
 - 4) В современных ЭВМ используют, в основном, биполярные транзисторы.

Задание #14

Худшие показатели скорости переключения - у ключа, реализованного на основе:

- 1) реле
- 2) вакуумной лампы
- 3) дискретного транзистора
- 4) интегральной схемы

Задание #15

Лучшие показатели быстродействия - у ключа, реализованного на основе:

- 1) реле
- 2) вакуумной лампы
- 3) дискретного транзистора
- 4) интегральной схемы

Задание #16

Компьютерные вирусы - ...

- 1) сознательно создаваемый вредоносный программный код
- 2) самопроизвольно появляется при работе неверно написанной компьютерной программы
 - 3) результат сбоя в работе аппаратуры ЭВМ
 - 4) имеют биологическое происхождение

Задание #17

Современные операционные системы общего назначения (например, Windows) строятся на основе архитектуры:

- 1) уровневой
- 2) монолитной
- 3) микроядерной
- 4) объектной

- ... способность операционной системы прекратить выполнение текущей задачи и передать управление задаче с более высоким приоритетом.
 - 1) вытесняющая многозадачность
 - 2) квазипараллельность
 - 3) приоретизация
 - 4) многопоточность

Тестирующая программа – MyTestX (или аналогичная по своим функциональным возможностям). Варианты подбираются автоматически тестирующей программой из банка тестовых заданий.

Критерии оценки за компьютерный тест из 18 заданий:

- оценка «отлично» ставится при наличии от 16 до 18 правильных ответов;
- оценка «хорошо» ставится при наличии от 13 до 15 правильных ответов;
- оценка «удовлетворительно» ставится при наличии от 10 до 12 правильных ответов;
- оценка «неудовлетворительно» ставится при наличии менее 10 правильных ответов.

Контролируемые компетенции: ОПК-2, ОПК-3

Оценка компетенций осуществляется в соответствии с таблицей 4.

Индивидуальные практические задания

А. Практическое задание «Межсетевой уровень модели стека TCP/IP: статическая классовая IPv4-адресация и маршрутизация по умолчанию»

Порядок выполнения:

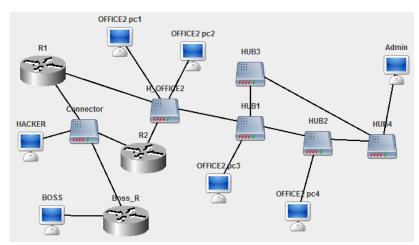
- 1. Создать новый проект вычислительной сети в программе JavaNetSim в соответствии с предложенным вариантом (см. п. 1.3).
- 2. Исправить физическую структуру предложенного варианта сети, если это необходимо:
- а. избавиться от кольца концентраторов (хабов), что исключит возможность возникновения широковещательного шторма;
- b. избавиться от последовательного соединения трех маршрутизаторов (роутеров), соединив их непосредственно через хаб, что исключит попадание пакетов в маршрутные ловушки.
- 3. Определить границы подсетей, образующих единую интегрированную сеть. Определить (если не заданы явно в предложенном варианте) адреса и маски каждой подсети в соответствии с методом классовой IPv4-адресации. Вычислить диапазоны допустимых IPv4-адресов узлов для каждой подсети.
- 4. Задать IPv4-адреса и маски для всех узлов интегрированной сети (в соответствии с методом классовой IPv4-адресации).

Задать IP-шлюзы по умолчанию (default gateway) для всех узлов интегрированной сети, чтобы обеспечить корректную доставку эхо-запроса и эхо-ответа между любой парой сетевых узлов.

В отчет необходимо включить настройки протокола IPv4 для всех узлов сети.

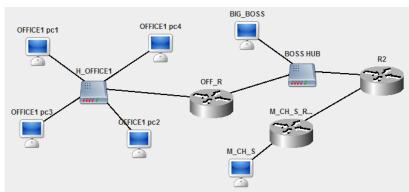
С помощью команды ping убедиться в правильности настроек маршрутизации между хостами К1 и К2.

Выполнить эхо-запросы с K1 на все узлы интегрированной сети (в т.ч. на K3). Убедиться, что эхо-ответы приходят.


5. <u>Не ранее</u>, чем через 4-5 минут после последнего запуска команды ping, выполнить эхо-запрос с K1 на K2. Сразу же зафиксировать содержимое ARP-таблицы узла K1 и вывод (log) программы. В отчете объясните данные ARP-таблицы.

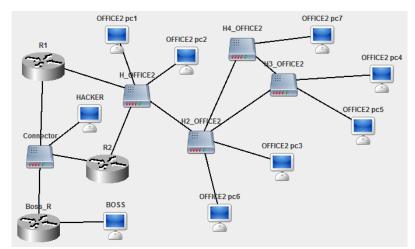
<u>Не позднее</u> 2 минут после предыдущей попытки повторить эхо-запрос с К1 на К2, снова зафиксировать log. Объясните различное количество записей в log'ax по сравнению с предыдущей попыткой.

- 6. В ARP-таблицу хоста К1 добавить статическую запись, содержащую соответствие MAC-адреса К2 IP-адресу шлюза К1. Выполнить эхо запрос с К1 на К2. Объясните результат. Удалить ранее внесенную статическую запись из ARP-таблицы.
- 7. Выполнить эхо-запрос с К1 на несуществующий IP-адрес узла в подсети хоста К2. Объясните результат.
- 8. Выполнить эхо-запрос с К1 на несуществующий IP-адрес узла с несуществующим адресом подсети. Объясните результат и его отличие от результата предыдущего задания.


Индивидуальные варианты:

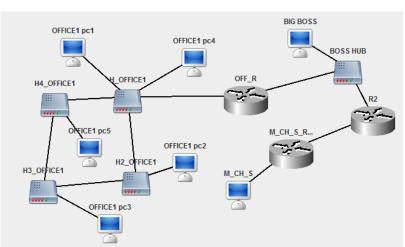
Вариант 1.

Компьютер Hacker имеет IP-адрес 117.168.131.5. Компьютер Boss имеет IP-адрес 64.17.0.21. Компьютер Admin имеет максимально допустимый адрес узла для частной сети класса B.

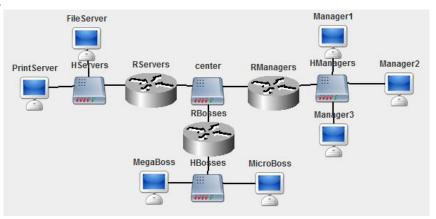

Обозначения в заданиях: K1 - Boss, K2 - Hacker, K3 - Admin. Вариант 2.

Сеть между маршрутизаторами OFF_R и R2: 136.0.0.0. Компьютер BIG_BOSS имеет максимально допустимый в данной подсети IP-адрес. Компьютер M_CH_S имеет IP-адрес из диапазона частных адресов класса B. Компьютер OFFICE1_pc1: 192.168.5.130.

Обозначения в заданиях: $K1 - BIG_BOSS$, $K2 - M_CH_S$, $K3 - OFFICE1_pc4$.

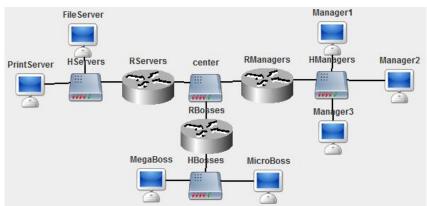

Вариант 3.

Сеть между маршрутизаторами R1, R2 и Boss_R: 172.30.0.0. Компьютер Boss: 10.2.130.1. Компьютер OFFICE2_pc1 имеет макси-мально допустимый IP-адрес в диапазоне частных адресов класса C.

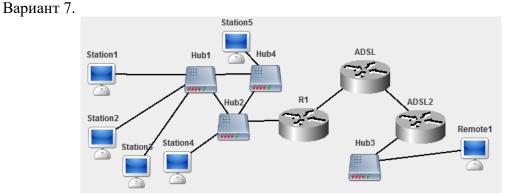

Обозначения в заданиях: K1 – Boss, K2 – Hacker, K3 – OFFICE2_pc1.

Вариант 4.

Сеть между маршрутизаторами OFF_R и R2: 104.0.0.0. Компьютер BIG BOSS имеет минимально возможный IP-адрес в этой подсети. Компьютер M_CH_S имеет IP-адрес 174.188.192.129. Компьютер OFFICE1 рс2 имеет частный IP-адрес класса C.

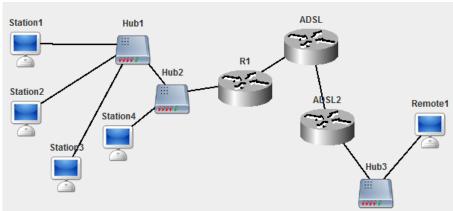

Обозначения в задании: K1 - BIGBOSS, $K2 - M_CH_S$, $K3 - OFFICE1_pc4$. Вариант 5.

Сеть между маршрутизаторами RServers, RManagers и RBosses: 25.0.0.0. Компьютер MegaBoss имеет максимально возможный IP-адрес в частной подсети класса С. Компьютер Manager3: 172.16.0.72. Компьютер FileServer: 11.16.0.142.


Обозначения в задании: K1 – MegaBoss, K2 – Manager2, K3 – FileServer.

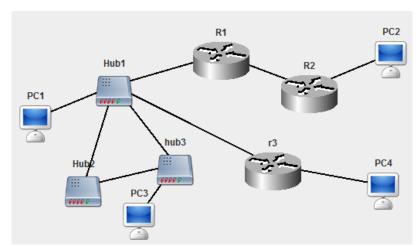
Вариант 6.

Сеть между маршрутизаторами RServers, RManagers и Rbosses — частная 192.168.12.0. Компьютер MicroBoss: 10.0.1.5. Компьютер Manager1: 129.0.1.75. Компьютер PrintServer имеет максимально возможный адрес в частной сети класса С.


Обозначения в задании: K1 – Manager3, K2 – PrintServer, K3 – MicroBoss.

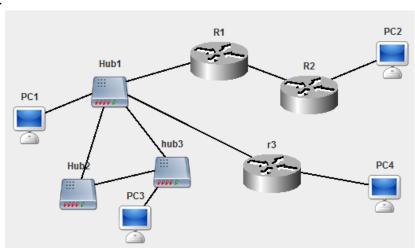
Сеть между маршрутизаторами R1 и ADSL: 172.30.0.0. Компьютер Station1 имеет IP-адрес 192.168.17.202. Подсеть компьютера Remote1: 19.0.0.0.

Обозначения в задании: K1 – Station1, K2 – ADSL, K3 – Remote1.


Вариант 8.

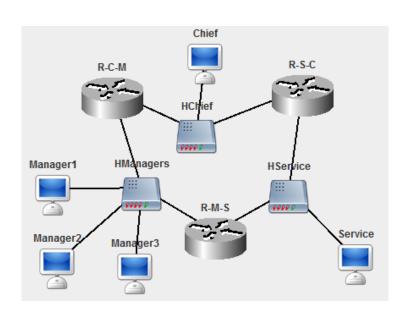
Сеть между маршрутизаторами R1 и ADSL: 192.168.200.0. Компьютер Station1 имеет IP-адрес 172.18.1.191. Компьютер Remote1 имеет IP-адрес 17.8.1.195.

Обозначения в задании: K1 – Station1, K2 – ADSL, K3 – Remote1.

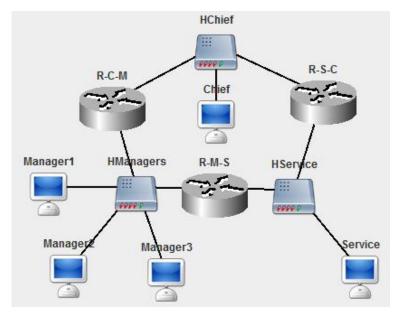

Вариант 9.

Компьютер PC1 имеет IP-адрес 129.168.1.52. Компьютер PC2: 12.168.1.52. Компьютер PC4: 192.168.1.52.

Обозначения в задании: K1 – PC1, K2 – PC2, K3 – PC4.

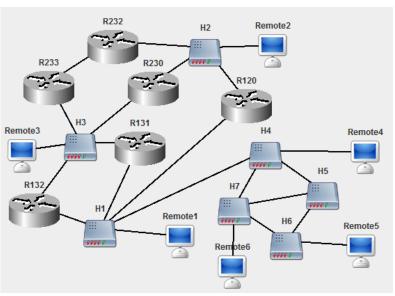

Вариант 10.

Компьютер PC1 имеет минимально допустимый адрес в частной сети класса B. Компьютер PC2: 168.172.0.11. Подсеть компьютера PC4 – класса A.


Обозначения в задании: K1 - PC1, K2 - PC2, K3 - PC4.

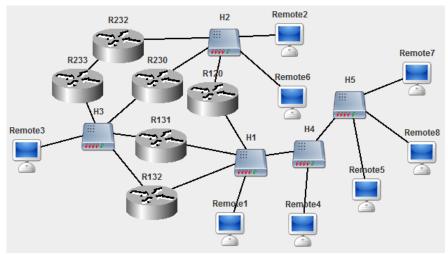
Вариант 11.

IP-адреса всех узлов сети находятся в частных сетях класса C. Обозначения в задании: K1 – Chief, K2 – Manager1, K3 – Service.


Вариант 12.

Подсеть компьютера Chief имеет IP-адрес 192.168.125.0. Остальные подсети – класса A.

Обозначения в задании: K1 – Manager3, K2 – Service, K3 – Chief.


Вариант 13.

Сеть компьютера Remote2: 72.0.0.0. Сеть между R232 и R233 — частная класса С. Компьютер Remote1 имеет максимально допустимый частный адрес класса С. Компьютер Remote3: 172.31.0.210.

Обозначения в задании: K1 – Remote1, K2 – Remote2, K3 – Remote3.

Вариант 14.

Сеть между маршрутизаторами R120, R230 и R232: 63.0.0.0. Сеть между R232 и R233 имеет наибольший частный адрес класса В. Компьютер Remote1 имеет IP-адрес 168.20.88.0. Компьютеры Remote2 и Remote3 расположены в подсетях класса С.

Обозначения в задании: K1 – Remote2, K2 – Remote3, K3 – Remote1.

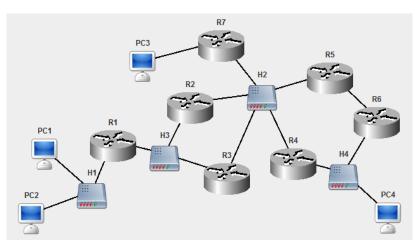
Б. Практическое задание «Межсетевой уровень: статическая бесклассовая IPv4-адресация и многонаправленная маршрутизация»

Порядок выполнения:

- 1. Создать электронный проект вычислительной сети в программе JavaNetSim в соответствии с предложенным вариантом (см. п. 2.2).
- 2. Определить границы подсетей, образующих единую интегрированную сеть. Вычислить (если не заданы явно в предложенном варианте) адреса и маски каждой подсети.
 - 3. Задать IPv4-адреса и маски для всех узлов интегрированной сети.
- 4. Задать IP-шлюзы «по умолчанию» и маршрутные таблицы для узлов интегрированной сети, чтобы обеспечить корректную доставку пакетов от K1 к K2 и обратно, от узла K2 к K3 и обратно, от узла K3 к K1 и обратно.

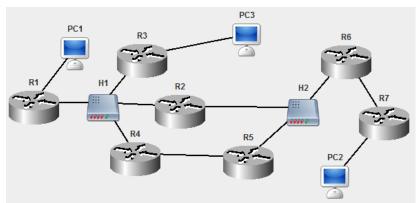
Обязательные условия:

- а. пакеты должны доходить до узлов кратчайшим путем;
- b. маски подсетей должны быть наименьшей возможной длины.
- 5. С помощью команды ping убедиться в правильности настроек маршрутизации между К1, К2 и К3.


Индивидуальные варианты: Вариант 1.

Сеть между роутерами R1, R2 и R3: 192.168.3.0. Сеть между R3 и R4: 192.168.4.0. Сеть между R5 и R6: 192.168.5.0. Компьютер PC2 имеет IP-адрес 192.168.0.10. Компьютер PC3: 192.168.0.40. Компьютер PC4: 192.168.0.70.

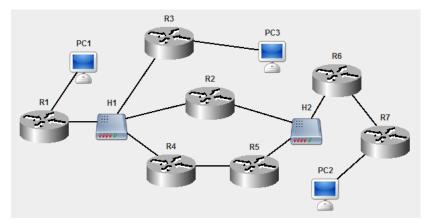
Обозначения в задании: K1 – PC1, K2 – PC3, K3 – PC4.


Вариант 2.

Сеть между роутерами R1, R2 и R3: 172.168.3.0. Сеть между R5 и R6: 172.168.4.0. Компьютер PC2 имеет IP-адрес 172.168.0.100. Компьютер PC3: 172.168.0.120. Компьютер PC4: 172.168.0.140.

Обозначения в задании: K1 - PC1, K2 - PC3, K3 - PC4.

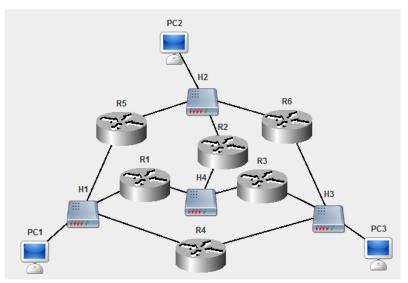
Вариант 3.



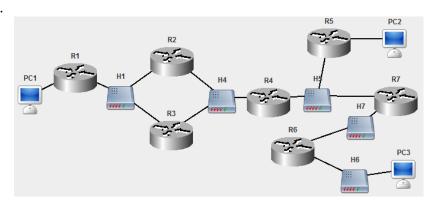
Сеть между роутерами R1, R2, R3 и R4: 192.168.0.96. Сеть междуR4 и R5: 172.168.4.0. Маршрутизатор R6 имеет адрес10.120.0.39 на первом интерфейсе и

10.120.0.139 на втором интерфейсе. Компьютер PC1 имеет IP-адрес 192.168.0.4. Компьютер PC2: 192.168.0.34. Компьютер PC3: 192.168.0.234.

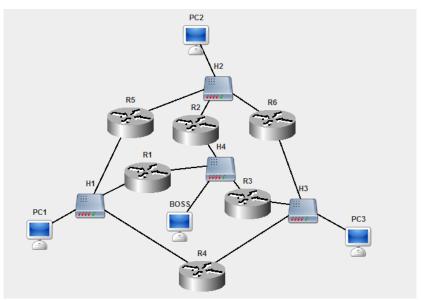
Обозначения в задании: K1 - PC1, K2 - PC2, K3 - PC3.


Вариант 4.

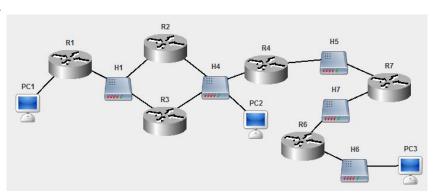
Сеть между роутерами R1, R2, R3 и R4: 199.0.5.192. Сеть между R4 и R5: 172.16.0.128. Маршрутизатор R6 имеет адрес 192.138.0.1 на первом интерфейсе и 192.168.0.10 на втором интерфейсе. Компьютер PC1 имеет IP-адрес 199.0.5.2. Компьютер PC3 имеет IP-адрес 199.0.5.250.


Обозначения в задании: K1 - PC1, K2 - PC2, K3 - PC3.

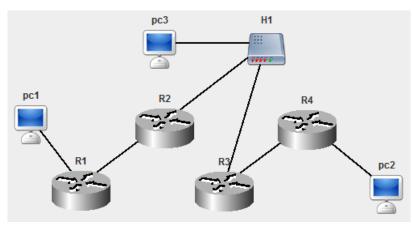
Вариант 5.


IP-адреса всех хостов находятся в диапазоне 192.168.5.128 - 192.168.5.254. Обозначения в задании: K1 - PC1, K2 - PC2, K3 - PC3.

Вариант 6.

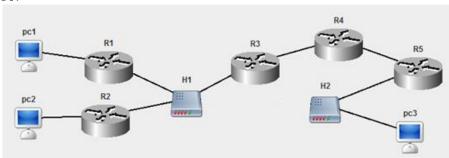

Сеть между узлами R1,R2, R3: 172.16.120.0. Сеть между R2, R3, R4: 172.16.112.0. Сеть между R4, R5, R7: 172.16.108.0. Сеть между R6 и R7: 172.16.96.0. Компьютер РС1 имеет IP-адрес 172.16.128.1. Компьютер РС2: 172.16.100.1. Компьютер РС3: 172.16.88.2. Обозначения в задании: K1 – PC1, K2 – PC2, K3 – PC3.

Вариант 7.


Все узлы имеют IP-адреса из диапазона 204.188.45.32 - 204.188.45.127. Обозначения в задании: K1 - PC1, K2 - BOSS, K3 - PC3.

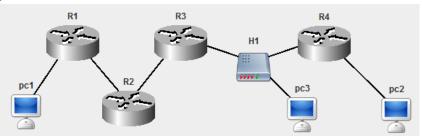
Вариант 8.

Сеть между узлами R1, R2, R3: 192.168.120.0. Сеть между R4 и R7: 192.168.108.0. Сеть между R6 и R7: 192.168.96.0. Компьютер PC1 имеет IP-адрес 192.168.128.1. Компьютер PC2: 192.168.112.4. Компьютер PC3: 192.115.88.2.

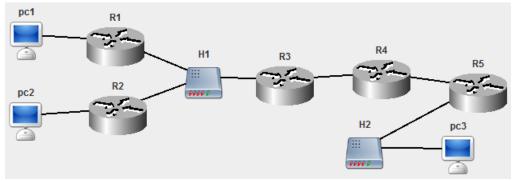

Обозначения в задании: K1 - PC1, K2 - PC2, K3 - PC3. Вариант 9.

Все маршрутизаторы и компьютеры имеют IP-адреса из диапазона 200.0.1.32 - 200.0.1.127.

Обозначения в задании: K1 - PC1, K2 - PC2, K3 - PC3.

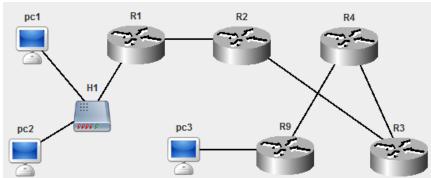

Вариант 10.

Сеть между узлами R3 и R4: 192.168.0.96. Сеть между R4 и R5: 192.168.0.128. КомпьютерРС1 имеет IP-адрес 10.0.0.5. Компьютер PC2: 10.0.0.130. Компьютер PC3: 10.0.0.194.


Обозначения в задании: K1 - PC1, K2 - PC2, K3 - PC3.

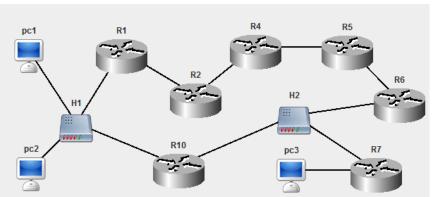
Вариант 11.

Все узлы имеют адреса из диапазона 192.168.0.128 - 192.168.0.191. Обозначения в задании: K1 - PC1, K2 - PC2, K3 - PC3.


Вариант 12.

Сеть между узлами R1,R2, R3: 10.0.120.0. Сеть между R3 и R4: 192.168.0.0/24. Сеть между R4 и R5: 192.168.1.0/24. Компьютер PC1 имеет IP-адрес 10.0.0.4. Компьютер PC2: 10.0.0.11. Компьютер PC3: 10.0.0.19.

Обозначения в задании: K1 – PC1, K2 – PC2, K3 – PC3.


Вариант 13.

Все маршрутизаторы и компьютеры имеют IP-адреса из диапазона 172.16.16.192 – 172.16.16.254.

Обозначения в задании: K1 - PC1, K2 - R4, K3 - PC3.

Вариант 14.

Все маршрутизаторы и компьютеры имеют IP-адреса из диапазона 172.0.10.1-172.0.88.254.

Обозначения в задании: K1 - PC1, K2 - R5, K3 - PC3.

Критерии оценки индивидуальных практических заданий:

Индивидуальное практическое задание считается выполненным при наличии правильно настроенной электронной модели вычислительной сети, а также отчета, оформленного в соответствии с требованиями.

Содержание отчета: титульный лист, цель работы, содержание варианта, схема сети, описание хода работы (по заданиям), выводы.

В отчет необходимо включить настройки протокола IPv4 и маршрутные таблицы для всех узлов сети, результаты вывода программы, полученные при выполнении эхозапросов (возможно, в виде скриншотов).

Контролируемые компетенции: ОПК-2, ОПК-3.

Оценка компетенций осуществляется в соответствии с таблицей 4.

Темы курсовых работ

«Изучение работы протокольного стека TCP/IP» (по вариантам).

Индивидуальный вариант определяет состав и топологию сети, требования по адресации и маршрутизации, перечень заданий.

Критерии оценки курсовой работы:

Положительная оценка за курсовую работу ставится при выполнении всех заданий, при обязательном наличии пояснительной записки, оформленной в соответствии с требованиями.

Вопросы к экзамену

(1 семестр)

- 1. История развития средств ВТ. Поколения ЭВМ.
- 2. Классификации ЭВМ. Понятие архитектуры ЭВМ.
- 3. Функциональная схема ЭВМ. Узлы ЭВМ и каналы связи.
- 4. Принципы фон Неймана. Принстонская архитектура ЭВМ.
- 5. Гарвардская архитектура. Сравнение принстонской и гарвардской архитектур, преимущества, недостатки.
 - 6. Классификация Флинна. Процессорный конвейер.
 - 7. Многоядерный процессор. Многопроцессорные системы.
 - 8. Арифметические основы функционирования ЭВМ.
 - 9. Представление чисел. Двоичная арифметика.
- 10. Логические основы функционирования ЭВМ. Предикаты. Нормализация. Логический элемент. Конечный цифровой автомат.
 - 11. Ключевой режим работы транзистора. Элементная база ЭВМ.
 - 12. Триггер. Регистр. Сумматор.
 - 13. Корпус и блок питания ПК.
 - 14. Материнская плата.
 - 15. Каналы связи узлов ПК.
 - 16. Процессор.
 - 17. Оперативная память.
 - 18. Видеоподсистема ПК.
 - 19. Постоянная память в ПК.
 - 20. Внешние интерфейсы. Шина USB.
 - 21. Устройства ввода и вывода в ПК.
 - 22. Мультимедийные устройства.
 - 23. Основы программного управления ЭВМ. Алгоритм. Машинная команда.
 - 24. Компьютерная программа. Программное обеспечение ЭВМ.
 - 25. Операционная система. Процессы и потоки. Вытесняющая многозадачность.
 - 26. Файловая система. FAT и NTFS.

(2 семестр)

- 1. История развития средств ВТ. Поколения ЭВМ.
- 2. Классификации ЭВМ. Понятие архитектуры ЭВМ.
- 3. Функциональная схема ЭВМ. Узлы ЭВМ и каналы связи.
- 4. Принципы фон Неймана. Принстонская архитектура ЭВМ.
- 5. Классификация Флинна. Процессорный конвейер.
- 6. Многоядерный процессор. Многопроцессорные системы.
- 7. Арифметические основы функционирования ЭВМ. Представление чисел.
- 8. Двоичная арифметика.
- 9. Логические основы функционирования ЭВМ. Предикаты. Нормализация.
- 10. Логический элемент. Конечный цифровой автомат.
- 11. Ключевой режим работы транзистора. Элементная база ЭВМ.
- 12. Триггер. Регистр. Сумматор.
- 13. Корпус и блок питания ПК.
- 14. Материнская плата.
- 15. Каналы связи узлов ПК.
- 16. Процессор.

- 17. Оперативная память.
- 18. Видеоподсистема ПК.
- 19. Постоянная память в ПК.
- 20. Внешние интерфейсы. Шина USB.
- 21. Устройства ввода и вывода в ПК.
- 22. Мультимедийные устройства.
- 23. Основы программного управления ЭВМ. Алгоритм. Машинная команда.
- 24. Компьютерная программа. Программное обеспечение ЭВМ.
- 25. Операционная система. Процессы и потоки. Вытесняющая многозадачность.
- 26. Файловая система.
- 27. Понятие вычислительной сети. Компоненты сетей
- 28. Основная задача сетевого взаимодействия.
- 29. Классификации сетей.
- 30. Коммутация в сетях.
- 31. Понятие топологии.
- 32. Понятие многоуровневой модели сетевого взаимодействия. Сетевой протокол и протокольный стек. Модель OSI.
 - 33. Модель стека TCP/IP (DoD).
- 34. Сетевая архитектура. Сетевой интерфейс. Методы доступа к среде передачи. Кодирование сигналов. Физическая адресация. Сетевой кадр (фрейм).
 - 35. Архитектуры Ethernet, Wi-Fi, BlueThooth.
- 36. Адресация в компьютерных сетях. Адресное пространство. IPv4-адресация. Протокол ARP.
 - 37. IPv6-адресация. DHCP. DNS. Технология NAT.
 - 38. ІРv4-пакет. ІРv6-пакет.
 - 39. Транспортный уровень модели TCP/IP. Протоколы TCP и UDP.
 - 40. Методы взаимодействия в гетерогенных сетях.
 - 41. Маршрутизация. Роутер.
 - 42. Протоколы RIP и OSPF.
 - 43. Сети общего пользования. Сеть Интернет. Служба Web.
 - 44. Облачные технологии.
 - 45. Технология VPN.

Контролируемые компетенции: ОПК-2, ОПК-3.

Оценка компетенций осуществляется в соответствии с таблицей 4.